

## Aluminiumbronze | Flat and Square Bars



| Alloy                 | Cu Al10 Ni 5 Fe 4, CW307G                    |  |  |  |
|-----------------------|----------------------------------------------|--|--|--|
| Method of Manufacture | forged & premachined                         |  |  |  |
| Specification         | EN 12 167                                    |  |  |  |
| Tolerance             | width +2/-0 mm                               |  |  |  |
|                       | thickness +2/-0 mm                           |  |  |  |
| Temper                | M, mostly R680                               |  |  |  |
| Machinability         | moderate, similar to steel of same hardness  |  |  |  |
| Hot Working           | good                                         |  |  |  |
| Corrosion Resistance  | very good versus most media, incl. sea water |  |  |  |
| Wear Restistance      | very good                                    |  |  |  |
| REACH                 | no obligations                               |  |  |  |
| RoHS                  | conformal                                    |  |  |  |
|                       |                                              |  |  |  |

| Mechanical Properties |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |  |  |
|-----------------------|---------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|--|
|                       | Tensile strength R <sub>m</sub> | Yield stress R <sub>p 0,2</sub>                                                  | Elongation<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hardness<br>HB                                              |  |  |
|                       | as obtained                     |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |  |  |
| 30                    | ≥ 680 N/mm <sup>2</sup>         | $\geq$ 320 N/mm <sup>2</sup>                                                     | ≥ 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |  |  |
| 70                    |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170-210                                                     |  |  |
| 40                    | ≥ 740 N/mm <sup>2</sup>         | ≥ 400 N/mm <sup>2</sup>                                                          | ≥ 8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                             |  |  |
| 00                    |                                 |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≥ 200                                                       |  |  |
|                       | 30<br>70<br>40                  | Tensile strength $R_m$ 30 $\geq 680 \text{ N/mm}^2$ 70 $\geq 740 \text{ N/mm}^2$ | Tensile strength $R_m$ Yield stress $R_{p \ 0,2}$ as obtained $R_p \ 0,2$ and $R_p \ 0,2$ as obtained $R_p \ 0,2$ as obtained $R_p \ 0,2$ as obtained $R_p \ 0,2$ and $R_p \ 0,2$ as obtained $R_p \ 0,2$ and $R_p \ 0,2$ as obtained $R_p \ 0,2$ and $R_p \ 0,2$ as obtained $R_p \ 0,2$ and $R_p \ 0,2$ as obtained $R_p \ 0,2$ and $R_p \ $ | Tensile strength $R_m$ Yield stress $R_{p,0,2}$ as obtained |  |  |

High strength even at higher temperatures up to approx. 400°C. High fatigue strength even when exposed to corrosion. Resistant to neutral and acid, watery media as well as seawater. Good resistance to scaling, erosion and cavitation. Very high wear resistance. Good sliding properties in conjunction with mating material with hard surfaces and perfect lubrication. Plates for condenser and heat exchanger sheets. Shafts, screws, wear parts, control parts for hydraulics, high-pressure steam fittings. Mechanically and chemically stressed parts in mechanical engineering, shipbuilding and mining.

## **Chemical Composition**

Cu Rest Al 8.5-11.0% Ni 4.0-6.0% Fe 3.0-5.0%

Impurities, max.: Mn 1.0%, Pb 0.05%, Si 0.2%, Sn 0.1%, Zn 0.4%, other 0.2%

## **Comparable Specifications**

Cu Al 10 Ni 5 Fe 4, 2.0966, DIN 17 665 C 63 200, C 63 000 UNS CA 104, BS 2872, 2874, 2875

Schreier Metall GmbH Bessemerstr. 17 D-40699 Erkrath-Hochdahl

Telefon +49 2104 1737-0

Internet: www.schreier-metall.de E-Mail: sales@schreier-metall.de