

Mechanical Properties				
	Tensile strength \mathbf{R}_{m}	Yield stress $\mathbf{R}_{\mathrm{p} 0,2}$	Elongation A	Hardness HB
M	as obtained			
R680	$\geq 680 \mathrm{~N} / \mathrm{mm}^{2}$	$\geq 320 \mathrm{~N} / \mathrm{mm}^{2}$	$\geq 10 \%$	
H170				170-210
R740	$\geq 740 \mathrm{~N} / \mathrm{mm}^{2}$	$\geq 400 \mathrm{~N} / \mathrm{mm}^{2}$	$\geq 8 \%$	
H200				≥ 200

High strength even at higher temperatures up to approx. $400^{\circ} \mathrm{C}$. High fatigue strength even when exposed to corrosion. Resistant to neutral and acid, watery media as well as seawater. Good resistance to scaling, erosion and cavitation. Very high wear resistance. Good sliding properties in conjunction with mating material with hard surfaces and perfect lubrication. Plates for condenser and heat exchanger sheets. Shafts, screws, wear parts, control parts for hydraulics, high-pressure steam fittings. Mechanically and chemically stressed parts in mechanical engineering, shipbuilding and mining.

Chemical Composition

Cu Rest
Al 8.5-11.0\%
Ni 4.0-6.0\%
Fe 3.0-5.0\%

Impurities, max.
Mn 1.0%, Pb 0.05%, Si 0.2%, Sn 0.1%, Zn 0.4%, other 0.2 \%

Comparable Specifications

Cu Al 10 Ni 5 Fe 4, 2.0966, DIN 17665
C 63 200, C 63000 UNS
CA 104, BS 2872, 2874, 2875

